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A novel method is introduced for solving the three-dimensional Stokes equations via 
a spectral element approach to the boundary integral method. The accuracy and 
convergence of the method are illustrated through applications involving rigid 
particles, deformable droplets and interacting particles. New physical results are 
obtained for two applications in low Reynolds number flow: the permeability of 
periodic models of a porous membrane and the instability of a toroidal droplet subject 
to non-axisymmetric perturbations. Further applications are described in the 
companion paper (Higdon & Muldowney 1995). 

1. Introduction 
Over the past two decades, the boundary integral method has proven to be a versatile 

technique for the solution of the Stokes equations for low Reynolds flow. The 
application of this technique to the three-dimensional Stokes equations was first 
introduced by Youngren & Acrivos (1975) for flow past rigid particles. The method 
was quickly adopted for flow past deformable drops and bubbles (Youngren & Acrivos 
1976) and has since been used in numerous studies involving droplet deformation and 
breakup (see e.g. Rallison 1984; Pozrikidis 1992; Stone 1994). Beyond these initial 
applications, the boundary integral method has been employed to study microscopic 
flow in porous media (Zick & Homsy 1982; Larson & Higdon 1986, 1987), 
particle-wall interactions (see Weinbaum et al. 1990), flow over cavities (Higdon 1985, 
1990), the swimming of microscopic organisms (Phan-Thien, Tran-Cong & Ramia 
1987), the deformation of red blood cells (Li Barthes-Biesel & Helmy 1988; Pozrikidis 
1990) and the design of experiment devices (Higdon 1993). The boundary integral 
method has also been proposed as an alternative to multipole expansion methods for 
the simulation of many-body problems in concentrated suspensions (Kim & Karrila 
199 1). These references illustrate the breadth and diversity of boundary integral 
methods in low Reynolds number flow, yet they represent only a small sample of the 
boundary integral applications appearing in the fluid dynamics literature. Additional 
references and background material may be found in the review articles cited above 
and in the recent monographs by Kim & Karrila (1991) and Pozrikidis (1992). 

Many versions of the boundary integral method for Stokes equations have been 
developed with different strategies for theformulation of the integral equations and the 
discretization of the boundary variables. In the formulation, different approaches lead 
to Fredholm integral equations of the first kind, of the second kind or of mixed type. 
In the discretization of the integral equation, the boundary may be treated as a single 
domain, or divided into a number of subdomains with a suitable discretization defined 

t Present address: Mobil Research and Development Co, Billingsport Rd, Paulsboro, NJ 08066, 
USA. 
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on each region. Early implementations of the boundary integral method (e.g. 
Youngren & Acrivos 1975) employed a zeroth-order discretization with the boundary 
divided into a large number of planar surface elements and the physical variables, 
surface stress and velocity, defined as constants over each surface element. At the other 
extreme, a boundary integral method may employ a single domain with the physical 
variables represented as high-order orthogonal expansions such as spherical harmonics 
(see e.g. Zick & Homsy 1982). This approach yields high accuracy with a minimum 
number of unknowns; however, it is limited to idealized geometries such as spheres and 
rectangular domains. 

To achieve increased accuracy while maintaining versatility, one may divide the 
boundary into a collection of surface elements with first-order, second-order or higher 
discretizations on each element. This approach has been implemented for both two- 
dimensional (Higdon 1985) and three-dimensional Stokes flows (Schnepper 1988 ; 
Higdon & Schnepper 1994). Alternative discretizations based on finite element 
methods have also been developed with both linear and quadratic elements (Chan, 
Beris & Advani 1992). 

A significant development in finite element methodology has been the spectral 
element method in which high-order bases are defined in terms of orthogonal 
polynomials (Maday & Patera 1989). The attraction of this approach is that it exploits 
the exponential convergence associated with spectral methods while retaining the 
versatility of the finite element method. The disadvantage of spectral element methods 
compared with low-order finite element methods is that the spectral basis increases the 
bandwidth of the sparse system matrices, increasing the computational effort. Thus the 
increased accuracy of the spectral representation must be balanced against the 
increased computational cost. 

The spectral element approach may be exploited in a boundary integral formulation 
by utilizing spectral boundary elements. In the boundary integral method, the linear 
systems arising from the discretized integral equation involve dense system matrices 
independent of the form of discretization. Thus the solution of the linear system for a 
spectral boundary element method requires no more effort than that for a low-order 
boundary integral method with the same number of unknowns. One achieves all of the 
benefits of spectral discretizations without incurring any additional computational 
cost. High-order polynomial bases have been used by numerous authors (Guo, von 
Petersdorff & Stephan 1990; Parriera 1988; Rank 1988; Alarcon & Reverter 1986) for 
two-dimensional boundary integral application in potential flow, elastostatics and 
other applications. In our own studies, (Occhialini, Muldowney & Higdon 1992; 
Occhialini & Higdon 1992; Higdon 1993), we have employed the spectral boundary 
element method for two-dimensional Stokes flows in a variety of geometries with 
excellent results. 

To this date, there has been no application of the spectral boundary element method 
to three-dimensional Stokes flow. In fact, the authors are not aware of any study 
incorporating a true spectral boundary element approach for three-dimensional 
domains. Cerrolaza & Alarcon (1987) discussed the use of Legendre polynomials as an 
adaptive basis for three-dimensional potential problems and presented limited results 
for simple geometries. However, the addition of higher-order basis functions in an 
adaptive sense does not realize the potential of a spectral formulation. Specifically, 
such a method does not yield the exponential convergence of spectral expansions, nor 
does it exploit the computational efficiencies of tensor product bases. (See Canuto et 
al. 1988.) 

The goal of the present effort is to develop a robust spectral boundary element 
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algorithm for three-dimensional Stokes flows. In pursuing this goal, we pay particular 
attention to the practical problems which are encountered in applying the algorithm to 
physical problems of interest to fluid dynamicists. In the following sections, we discuss 
(i) the formulation and discretization of the integral equations, (ii) the development of 
effective strategies for numerical integration, (iii) convergence results for numerical test 
cases, and (iv) the use of these algorithms in typical applications in low Reynolds 
number flow. In a companion paper (Higdon & Muldowney 1995), we employ the 
spectral boundary element method to compute the resistance functions for spherical 
particles, droplets and bubbles in cylindrical domains. 

2. Boundary integral formulation 
The governing equations for low Reynolds number flow are the Stokes equations 

w-a = - Wp-tpV2u = 0 
and the continuity equation 

w - u  = 0. 

Following Oseen (see Happel & Brenner 1973, pp. 79-81), one may introduce the 
fundamental solution S and its associated stress T :  

where 2 = x-xo and r = 121. 
With these expressions, the velocity at a point xo on the boundary of the fluid 

domain S, may be expressed in the integral form (Pozrikidis 1992; Higdon & 
Schnepper 1994) 

wheref= 6 - n  is the surface stress and the normal vector n points into the fluid. 
For boundary value problems with velocity boundary conditions, the integral 

formula ( 5 )  leads to Fredholm integral equations of the first kind. First-kind equations 
may lead to ill-conditioned systems, and there is some concern over the use of these 
equations for robust numerical computations. Hsiao (1988) conducted a rigorous 
stability analysis for the solution of first-kind integral equations for the two- 
dimensional Laplace's equation. He showed that smooth convergence may be achieved 
and discussed the limits of resolution imposed by high condition numbers and round- 
off error. In our own work, we have found that spectral boundary element algorithms 
based on first-kind equations are quite robust and yields results of extremely high 
precision. 

To avoid the problems associated with first-kind equations, a number of authors 
(Hebeker 1986, 1988; Power & Miranda 1987; Kim & Karrila 1991 ; Pozrikidis 1992; 
Ingber & Mondy 1993) have suggested formulations based on equations of the second 
kind. Ingber & Mondy develop a second-kind equation for the surface stress based on 
the integral formula : 
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where 

For viscous free surface flows, neither the velocity nor the surface stress are known 
explicitly; however, both must satisfy continuity conditions across the fluid interface. 
In these circumstances, we write an integral formula ( 5 )  for each fluid region and 
subtract the results to obtain an equation for the surface velocity in terms of the jump 
in surface stress. Let a body of fluid with density p1 and viscosity Ap be immersed in 
an infinite fluid with density pz and viscosity p. 

The integral for u may be expressed as 

1-A 1 +-- 1 +A4n/sB(7;,k u.(x)nj)dS. a (8) 

(See Pozrikidis 1992 or Higdon & Schnepper 1994 for details.) 

stress Af  is given by 
With constant surface tension y and gravitational acceleration g, the jump in surface 

Af = 74V.n) n + @2 - P J  ( g - 4  n. (9) 

The integral formulae (5 ) ,  (6) and (8) provide the basis for the integral equations 
most commonly encountered in three-dimensional Stokes flow. In the following 
sections, we consider optimal strategies for the discretization, integration and solution 
of these equations. 

3. Spectral boundary element discretization 
Let the boundary surface of a three-dimensional body be divided into a collection 

of curvilinear quadrilateral surface elements S,, a = 1, N E .  (See figure 1.) On each 
surface element, define a two-dimensional parametric representation with variables f 
and q on the interval [ - 1, 11. On each surface element, define geometry collocation 
points x(f i ,  qj), i = 1, N G , j  = 1, NG, where the values of (ti, qj) are chosen as the zeros 
of the N,th-order polynomial from a family of orthogonal polynomials. In general, 
both Chebyshev and Legendre polynomials yield excellent results in approximating 
smooth functions (Gottlieb & Orszag 1984), and we have employed both with 
comparable results. In some circumstances, there is a slight advantage to using 
Legendre polynomials, because the points correspond to the evaluation points for a 
Gauss-Legendre quadrature formula. All work described in this paper is based on the 
use of Legendre polynomials. 

With the collocation points specified, the position of any point along the surface is 
expressed as a Lagrangian interpolant with respect to f and q ;  that is 

where hi is the (N, - 1)-order Lagrangian interpolant polynomial defined by 

All geometrical quantities such as tangent vectors, normal vectors, surface curvature, 
hi(&) = sij. 
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FIGURE 1. Mapping of spectral boundary element to square [ - 1, 11 x [ - 1, 11. 

etc. may be calculated as derivatives of the geometry interpolating functions. Because 
the polynomial representation is of high order, analytical differentiation yields 
derivative quantities without significant loss of accuracy. It proves convenient to define 
a differentiation matrix 

and thus to express derivatives in the compact forms 

dki 2 h;(tk) (1 1) 

xCtl = dki xit, xqkl = dlj x k j ,  (12) 

where the summation convention is assumed in (12). 
In the literature on spectral methods, the differentiation matrix dti is referred to as 

the collocation derivative. The definition (1 1) is valid for any choice of collocation 
points and may be evaluated directly from the general expression for a Lagrangian 
interpolant. For special choices of ti such as Legendre or Chebyshev collocation 
points, closed-form expressions for dki are available. (See Canuto et al. 1988, g2.3, 
2.4). For the efficient evaluation of derivatives at an arbitrary collection of points, it 
proves effective to evaluate the derivatives at the collocation points using (12) and to 
interpolate to the desired points using an equation analogous to (10). 

With the specification of the boundary geometry completed, we turn to the 
representation of the physical variables u and$ We define a set of basis collocation 
points x(&, v j ) ,  i = 1, N,, j = 1, N,, where the values of (&, v j )  are chosen as before, 
i.e. as the zeros of an (N,  - 1)-order Legendre polynomial. All physical variables u and 
fare  then defined as interpolants of the form 

where hi is the ( N ,  - 1)-order Lagrangian interpolant polynomial defined by 
hi(&) = Sij .  

In defining the discrete representations above, we emphasize that a Lagrangian 
interpolant through the specified collocation points is exactly equivalent to an 
expansion in terms of the associated orthogonal polynomials. Specifically, if one 
computes the coefficients of a Legendre polynomial expansion employing Gauss- 
Legendre quadrature, the N,-term truncated series is identical to the N,-point 
Lagrangian interpolant through these N, quadrature points. Given this equivalence, 
the accuracy and convergence properties of the spectral element discretization may be 
inferred from those of the orthogonal polynomial series. For smooth functions with 



172 G. P. Muldowney and J .  J .  L. Higdon 

continuous derivatives of all orders, a finite series has a truncation error proportional 
to e P N R  (see Gottlieb & Orszag 1984; Canuto et al. 1988). This exponential 
convergence is the basis for the remarkable accuracy of spectral element methods. The 
enhanced convergence compared to low-order methods is analogous to that observed 
in comparing Gaussian quadrature formulae with Simpson's or trapezoid rules. In 
addition to the favourable convergence rate, interpolants based on orthogonal 
polynomials have excellent properties with respect to numerical stability. By contrast, it 
is well known (Gottlieb & Orszag 1984; Isaacson & Keller, 1966, $3.4) that high-order 
interpolants based on equally spaced points are subject to severe round-off error and 
numerical instability . 

With the discretization of the physical and geometry variables set, we substitute into 
the boundary integral formula (5) ,  or its equivalent, and require that the integral 
equation be satisfied at the discrete set of basis collocation points x(&, T ~ ) ,  i = 1, NB, 
j = 1, NB. The discrete form of the integral equation yields a linear system of three NE 
WB algebraic equations : 

These equations, combined with the boundary data at the NE WB basis points yields a 
consistent set of three NE WB equations in three NE WB unknowns. 

The matrices A and B in the discrete system are defined as integrals of the kernels 
and basis functions over the collection of surface elements. Each matrix is composed 
of elemental submatrices AaD, BaP giving the velocity at points on element a due to 
integrals over element p. The submatrices are defined in the form 

u = A f +  Bu. (14) 

A"p(k, I ;  m, n) = -__ J-l J-l S(xa(m,n)-xa(k , l ) )h , (5)h , (q)od~dy ,  

B"p(k,l;m,n) = - s' s' W P ( m ,  n)  - xa(k  0) h m ( 0  h,($ wdg dy, 
] (15) 

47cP -1 -1 

47c -1 -1 

where w is the differential area element defined by d S  = wdtdy. 

success of the spectral boundary element method. 
The accurate and efficient evaluation of these elemental integrals is critical to the 

4. Numerical integration on spectral boundary elements 
Owing to its high-order discretization, the spectral boundary element method 

requires special attention with respect to efficient numerical quadrature algorithms. In 
low-order boundary element methods, the boundary surfaces are divided into a large 
number of surface elements of small size and simple shape. On each element, one must 
integrate a singular kernel multiplied by a small number of basis functions. Under these 
conditions, simple transformations (Duffy 1982) and multi-level domain subdivision 
(Chan et al. 1992) may be employed for accurate quadratures. By contrast, spectral 
boundary elements may cover a large surface area with complex shapes and high 
curvature. Integrations are required on a much smaller number of elements, but with 
a much larger number of basis functions. Under these conditions, it is more efficient 
to employ a single high-order quadrature algorithm over the entire element. If the 
algorithm is based on a product of one-dimensional rules [& x yj], the operation count 
for interpolation and function evaluation is further reduced. (This is a characteristic 
feature of all product bases in spectral methods.) In the discussion below, we consider 
two separate quadrature problems : (i) singular integrals when the collocation point 
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falls on the element of integration and (ii) nearly singular integrals where the 
collocation points lies close to the element, but the kernel is non-singular. 

4.1. Singular quadratures 
Consider a spectral element with variables ([, 7) defined on the interval [ - 1, 11. Let a 
collocation point be located at position (to, 70)  and define variables [= [-to, 
d = 7-7,. The kernels of the integral formulae ( 5 )  etc., have r-l singularities at the 
collocation point. (The Tkernel appears to be more singular; however, 2-n is O(r2) for 
small r yielding an r-l singularity.) With the polynomial bases for f and u and the 
geometry mapping for 2, the singular integrals are of the form 

The most efficient procedure we have found for integrals of this type is based on 
variable mappings which cluster quadrature points close to the position of the 
singularity. For simplicity, consider the case with (to, 7,) at the origin and examine the 
integral on the first quadrant f I >  0, 7 > 0. Let zi and z j  denote standard 
Gauss-Legendre quadrature points and let si and t j  denote the shifted points 
si = $( 1 + zi) and ti = ;( 1 + zi). Define mapped variables 

where /3 is an empirical parameter with a value ,8 = 4 yielding the best overall 
performance. 

The mapping clusters points near the singularity while maintaining a regular spacing 
over the remainder of the interval. It is a product mapping which maintains the tensor 
product efficiency discussed above. We have conducted extensive tests of this 
quadrature algorithm for integrals of the form (16) with the O ( t 3 7 - m )  term set to zero. 
These tests show exponential convergence in all cases.? The integrations with non-zero 
cubic terms perform similarly, because the simple stretching transformation is 
insensitive to the exact type of singularity. Quadrature counts for these integrations are 
larger than those for simple elements, however, these integrations cover a large spectral 
element with many nodes. A spectral element with a basis N, = 12 has 144 total nodes. 
With a 24x24 quadrature of each of 4 quadrants, the total number of quadrature 
points/node is equivalent to a 4 x 4 point quadrature on each element for a zeroth 
order method with an equal number of nodes. The computational effort in each 
integration is dominated by the evaluation of the geometry and kernel functions. All 
NB basis evaluations require only a modest effort owing to the tensor product basis. 
Moreover, these evaluations are expressed as matrix multiplications which may be 
evaluated with machine coded BLAS3 calls. 

4.2. Non-singular quadratures 
Non-singular quadratures arise when integrating over a given element with a 
collocation point located on a different element. If the collocation point lies far from 
the given element, a straightforward product Gaussian quadrature is effective. On the 
other hand, if the collocation point lies in close proximity to the element, the nearly 
singular kernel will yield poor convergence. 

t Detailed tabulations for all quadrature tests described in this section are available from the 
editorial office, or directly from the author. 
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Our development for nearly singular integrals is based on quadrature techniques for 
one dimensional integrals of the form 

The nearest singularities in the complex plan: a;e located at C; = to kih,  and ideally 
we wish to map these points to infinity, e.g. s = C;/(C;2+h2)1’2. Unfortunately, mappings 
of this type bring the point at infinity into a finite distance, e.g. to s = & 1, and 
introduce singularities associated with the polynomial in the numerator. Instead, we 
seek mappings which move the point of singularity away from the interval of 
integration, while leaving the point at infinity at a respectful distance. After testing 
numerous strategies, we have found the best choice to be mappings of the form 

(19) 
which expresses f; as an algebraic function of s. The optimal choice for the integer n is 
the greatest integer < (1 +lne-l) where c is based on the minimum distance of the 
singularity from the interval, specifically 

C; = C;, + h sinh (n sinh-l s) 

c = h if 1[,1 < 1, t: = min{h,~C;o~-l} if 1$1 > 1. (20) 
With the mapping (19), the variable C; is replaced by s, and the integration with 

respect to s is performed with standard Gauss-Legendre quadrature. If C;, lies within 
the interval [ - 1, 11, the interval is split with separate quadratures on each subinterval. 
If a collocation point is located far from the interval, (20) yields n = 1, and the 
transformation (1 9) reduces to a linear transformation, i.e. standard Gauss-Legendre 
quadrature. 

Numerical tests of this algorithm demonstrate exponential convergence for all values 
of h, with smaller h requiring higher quadrature counts for the same accuracy. 
Comprehensive tests of this algorithm have been conducted for a range of h and to, and 
we have developed a simple estimate for the number of quadrature points required as 
a function of c defined above: 

NQ = No + 8 loglo(c-l). (21) 
If No yields a given accuracy for F = 1, then NQ points will guarantee the same 

accuracy independent of t:. While the coefficient in this relationship is empirical, its 
functional form may be inferred from the variable mapping (19). 

With a well-defined procedure for one dimensional nearly singular integrals, we 
consider two-dimensional integrals of the type encountered in the spectral boundary 
element algorithm. 

Integrals of this form are evaluated by the use of a product rule based on the one- 
dimensional quadratures described above. For each variable & and 7 ,  one determines 
to and 7, corresponding to the minimum value of h as expressed in integrals of the form 
(18). This choice determines the location of the independent quadrature points ci and 
qj for the two-dimensional integration. Numerical tests show excellent performance for 
this product integration rule. The success of this strategy is based on the smooth 
mapping properties of (19) which move the nearest singularities away from the domain 
of integration. 

The quadrature methods for singular and nearly singular integrals described above 
were developed with special attention to the requirements of the spectral element 
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discretization. Prior to the development of these algorithms, we made an extensive 
study of the boundary integral and numerical integration literature (Hammerlin 1979, 
1982; BraB & Hammerlin 1982; Espelid & Genz 1992). We tested analytical 
quadratures, triangle and polar mappings, Gaussian routines with specialized weights 
(e.g. w(x) = (ax2 + bx  + c)-~”),  product integration algorithms, and an assortment of 
analytical techniques. We have performed analytical integrations for asympjotic 
approximations of the integrand, extracting terms up to seventh order in ([, +), 
combined with numerical quadratures for the remainder. Each of these approaches 
proved less efficient than the procedures described above. This result may be attributed 
to two points made by Lyness (1992): (i) a method which is very good for one 
dimensional quadratures, or two-dimensional squares may not work for an element 
subject to even a linear mapping, (ii) an algorithm which is exact for a certain type of 
singularity may be very poor for a different singularity even if they are in some sense 
‘very close’. On the other hand, methods which map the singularity away from the 
domain of integration are insensitive to its exact form and perform well for non-simple 
geometries. A number of techniques similar to those proposed here are described by 
Hayami (1992), however those algorithms are not as efficient as the ( 6 , ~ )  product rules 
for spectral element discretization. 

5. Numerical results 
In the previous sections, we have given a detailed description of the formulation, 

discretization and integration steps involved in the spectral boundary element method. 
Here, we present a series of numerical examples which illustrate the performance of this 
method. For the first test case, we consider rigid oblate spheroidal particles with 
uniform flow U parallel to the minor axis of the particle. Boundary elements are 
defined by projecting from the surface of the spheroid to the faces of a rectangular 
prism of the same aspect ratio. In the first discretization, six elements are employed 
with a single element on each face of the prism. In the second, the lateral faces of the 
prism are bisected at the equator yielding a ten-element discretization. 

The results in table 1 (a)  show the convergence of the force with increasing order of 
the spectral basis N, using an isoparametric discretization with NG = N,. The results 
in the first column show the exponential convergence for a spheroid of aspect ratio 4: 1 
with an error of order 1 x lop5 at NB = 12. By contrast, the results for the 10: 1 aspect 
ratio yield an error of 1.5 x lop3 for the same order basis. For large aspect ratios such 
as 10 : 1, the surface stress changes very rapidly around the equator of the particle, and 
the 12th-order basis lacks sufficient resolution in this region. While one could achieve 
higher resolution with higher-order bases, that is not the most effective strategy. The 
collocation points associated with orthogonal polynomials cluster near the edges of the 
elements and away from the centre. In the six-element layout on the spheroid, the 
equator falls in the centre of an element yielding a less than optimal discretization. To 
correct this deficiency, the ten-element layout bisects each of the lateral faces of the 
prism, placing the equator at the edge of an element. Now, the collocation points 
cluster near the region of greatest change. Columns 3 and 4 demonstrate the 
effectiveness of this approach with an error of order 1 x lop7 for N, = 7 in the 4: 1 case, 
and N, = 11 in the 10 : 1 case. Even in the extreme case of a 100 : 1 spheroid (column 
5 )  the force has converged to an error of 1.6 x All results in table 1 (a)  employ 
quadrature counts of NQ = 25 for the singular integrals and No = 15 points for the 
non-singular cases. Smaller quadrature counts may be employed in cases where one 
does not require seven-figure accuracy in the calculated forces. 
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Six elements Ten elements 

(‘1 NB 

4 
5 
6 
7 
8 
9 

10 
11 
12 

4: 1 

0.006625 5 
- 0.003 450 3 

0.001 073 7 
- 0.000 599 3 

0.000208 6 
-0.000 118 0 

0.000044 1 
-0.0000239 

0.0000103 

10: 1 

0.0299629 

0.0125938 

0.005 8063 

0.002 884 1 

0.001 5548 

-0.0341150 

- 0.0 1 3 242 0 

-0.005685 1 

-0.0025469 

4: 1 

0.0000793 
0.000 006 7 

- 0.000 0007 
-0.000000 1 

0.000 000 0 
-0.000000 1 
- 0.000 000 1 
-0.000000 1 
-0.000000 1 

10: 1 

- 0.000 795 4 
-0.0000023 

0.0000470 
0.000 0 12 2 

-0.000001 1 
-0.000001 7 
-0.0000006 
-0.000000 1 

0.0000000 
Exact 0.8673470 0.8524506 0.8673470 0.8524506 

(b) N, # nodes 

3 36 
48 

4 64 
3 90 
5 100 

120 
6 144 
4 160 
7 196 

224 
5 250 
8 256 
9 324 
6 360 

10 400 
11 484 
7 490 

12 576 
8 640 

13 676 
14 784 
9 810 

10 1000 
11 1210 
12 1440 

- 

__ 

- 

N, = 4 
1st kind 

0.020988 8 
- 

-0.010235 1 
- 

-0.0044392 
- 

-0.001 3367 
- 

-0.0001422 
- 

- 

0.000066 8 
0.0000595 

0.000021 7 
0.000 004 7 

- 

-0.000002 3 
__ 

-0.0000028 
-0.000001 6 

- 

N, = 4 
2nd kind 

0.025 1892 
- 

-0.0991939 
- 

- 0.09 1 994 5 
- 

0.010593 2 

0.000 734 8 
- 

- 

- 

- 0.00 1 0 18 0 
- 0.000 0242 

- 

- 0.000 360 9 
- 0.000 046 1 

- 

0.0000424 

0.000044 1 
0.0000200 

- 

- 

- 

- 

- 

N, = 4 
2nd kind 

0.028 123 3 
- 

-0.0877546 
- 

-0.133 817 1 
- 

0.0194136 
- 

-0.0018926 
- 

- 

-0.001 3333 
-0.00001 79 

- 

-0.0004268 
- 0.000 056 2 

- 

0.0000478 

0.000051 6 
0.0000220 

- 

- 

- 

- 

- 

100: 1 

-0.001 2846 
-0.001 3646 
-0.001493 1 
-0.0012777 
-0.0010288 
- 0.000 755 0 
- 0.000 5122 
- 0.000 3 120 
-0.000 1634 

0.848 868 1 

N,= 10 
1st kind 
- 
- 

- 

- 0.005 983 1 
- 

__ 
- 

- 0.000 795 4 
- 
- 

-0.0000023 
- 

- 

0.0000470 
- 

- 

0.0000 12 2 

-0.000001 1 
- 

- 
- 

-0.000001 7 
- 0.000 000 6 
-0.0000001 

0.000 0000 

TABLE 1 (a). Dimensionless force F/(67cpuU) for oblate spheroids in a uniform flow U parallel to the 
minor axis of particle for aspect ratios 4: 1, 10: 1 and 100: 1. Columns show the convergence of the 
spectral element computation as a function of increasing order of basis N,. Discretization employs 
6 or 10 elements as described in text. (b) Error in dimensionless force F/(6npaU) for 10: 1 oblate 
spheroids in a uniform flow U parallel to the minor axis. The exact force is 0.8524506. Columns show 
the error on using different implementations of the boundary element method. Column 3, 
computations of Chan et al. (1992); column 4, four spectral elements with integral equation of first 
kind ( 5 ) ;  column 5 ,  same discretization as column 4, but integral equation of second kind (6) with 
velocity constraints; column 6 same as column 5 ,  but with force constraints; column 7, ten spectral 
elements with integral equation of first kind (6). Entries are listed in order of total number of nodes. 
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All computations were performed on IBM RS6000/320 workstations or SGI 
Challenge multiprocessor computers. The computation time required for the boundary 
integral calculation may be divided into two parts : t,,,,, the time required to perform 
the numerical integrations and to setup the system matrices; and tSOLVE, the time 
required to solve the linear system of equations. For six-element computations on a 
single SGI Challenge node, typical C.P.U. times ranged from t,,,,, = 6 s, t,,,,, = 
0.5 s for NB = 4, to tSETUP = 39 s, t,,,,, = 24 s for NB = 8 ,  to t sETUP = 166 s ,  
t,,,,, = 255 s for NB = 12. The number of linear equations in these three examples 
was 288, 1152 and 2592 respectively. These time estimates are based on a 
straightforward computation with no utilization of symmetry in the solution. In fact, 
many problems include one or more planes of symmetry which drastically reduce the 
computational effort. In the example above, even an arbitrary ellipsoid with distinct 
lengths for each axis contains three symmetry planes. Exploiting this symmetry reduces 
t S E T U p  by a factor of 8 and t,,,,, by a factor of fI3. In addition, memory requirements 
are reduced by a factor of 8’. Thus the numbers for a general ellipsoid with a six- 
element, NB = 12 computation reduce to t,,,,, = 21 s, t,,,,, = 0.5 s. Multiprocessor 
runs on the SGI Challenge showed a nearly linear decrease in C.P.U. time up to eight 
processors, with some fall off for more processors owing to saturation of the shared 
memory bus. Computation times on the IBM RS6000/320 were approximately 2.4 
times those on a single SGI node. 

In our next test, we focus on the case of the 1O:l oblate spheroid and consider 
different strategies for the formulation and discretization of the integral equations. We 
include the second-order results of Chan et al. (1992), the ten-element results from 
above, as well as spectral element results for four elements using both first- and second- 
kind formulations. The four-element spectral discretization divides a sphere into four 
quadrants and maps the spherical coordinates 8 and 4 onto the spheroid. The results 
in table 1 (b) are tabulated in order of the total number of nodes with the order of the 
spectral basis included in each case. 

Spectral element methods generally provide the best approach when extremely high 
precision is required; however, low-order methods often prove favourable when low 
accuracy is tolerable. In the present case, we find that the spectral discretization is quite 
competitive even at modest standards of accuracy. For each of the computations 
reported by Chan et al. the spectral element computations yield a smaller error with 
fewer nodes. With a 1 YO error tolerance, both spectral discretizations out perform the 
second-order method, with the four-element, 100-node spectral element error roughly 
half that of the 60-element, 120-node computation of Chan et al. At a tolerance of 
0.1 %, the 196-node spectral calculation yields an error seven times smaller than the 
224-node low-order method. Our conclusion is that the spectral boundary element 
discretization is at least competitive with low-order methods at any precision and will 
provide superior performance as precision requirements increase. Note that these 
spectral element computations employed the same basis NB on all elements and in each 
variable <, 7. Further increases in efficiency might be realized through an optimized 
choice of bases on different elements. 

The second issue to be addressed from table l(6) is the relative performance of the 
first-kind (5) and second-kind (6) integral formulations using the identical four-element 
discretization. For the second-kind formulation, additional equations are required to 
constrain the six rigid body eigensolutions. Two techniques were employed with 
comparable results. In the first, the first-kind equation (5) was integrated over the 
surface to supply velocity constraints, while in the second, the total force on the particle 
was specified, and the normalized resistance computed from the resulting velocity. 
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Four elements Ten elements 

N B  

4 
5 
6 
7 
8 
9 

10 
11 

Exact 

4: 1 

0.192 178 
0.052882 
0.012879 
0.006 526 
0.003 839 
0.002 133 
0.001 060 
0.000401 
0.487 72 

4: 1 

0.027036 
0.006342 
0.002 101 
0.000980 
0.000 449 
0.000 182 
0.000070 
0.000023 
0.48772 

10: 1 

0.124459 
0.056 897 
0.026 161 
0.01 1362 
0.006 46 5 
0.003 997 
0.002090 
0.000 799 
0.3294 

TABLE 2. Error in surface velocity on oblate spheroidal droplet (aspect ration 4: 1, 10: 1) with viscosity 
ratio h = 2 immersed in an extensional flow (23) with strain rate e and capillary number p a / y  = 1. 
Columns show maximum error in velocity 1u Maximum error in each case occurs at the 
equator. The last value in each column gives the radial velocity at this point evaluated with N, = 12; 
these values are accurate to the number of figures shown. 

Both integral formulations yield exponential convergence in the overall force ; 
however, the first-kind formulation yields consistently smaller errors. The superior 
performance of the first-kind formulation is consistent with the findings of Ingber & 
Mondy (1 993) using low-order boundary elements. While first-kind formulations may 
yield better overall accuracy, second-kind formulations may prove useful in 
applications where iterative solutions are utilized. See Kim & Karilla (1991) for further 
discussion of this issue. 

The results presented in table 1 demonstrate the robustness of the spectral boundary 
element method for flows with rigid boundaries. In our next example, we investigate 
the performance for free surface flows, using the integral equation of the second kind 
(8) for the surface velocity of a liquid droplet in a three-dimensional flow field. 

We consider an oblate spheroidal droplet with minor axis parallel to the z-axis 
subject to an extensional flow with characteristic strain rate e:  

urn = (ex, ey, -2ez).  (23) 

The droplet has viscosity ratio h = 2,  and capillary number ,uec/y = 1, where c is the 
minor axis of the spheroid and y is the surface tension. The surface of the droplet is 
represented by four-element and ten-element discretizations as described above. Table 
2 shows the maximum pointwise error in the velocity evaluated at all points over the 
surface of the sphere, i.e. the L" norm. In all cases, the maximum error occurs at the 
equator where the droplet curvature is the strongest. For reference, the last entry in 
each column give the actual value of the radial velocity. The spectral element 
computations yield exponential convergence in all cases. 

The results of tables 1 and 2 demonstrate the performance of the spectral boundary 
element method for flow about individual particles or droplets. In the next test, we 
consider a flow involving interacting particles in close proximity. The first case 
considers two spheres of radius c in a squeezing motion with a small gap of size 2h. 
Each sphere is discretized by projecting onto the faces of a cube with a single element 
on five faces and the contact face divided into four equal squares. This yields nine 
elements per sphere with the point of closest contact at the corner of an element. The 
error in the dimensionless force is shown in table 3 for gap sizes h / c  = 0.1 and 0.01. In 
the absence of an exact solution, the error in each case is estimated by comparing with 
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FIGURE 2. Crossed spheroids with aspect ratio of 6: 1. Lines show positions of 
constant 6 and constant 7 on particle surface. 
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Spheres Spheroids 

N, h/c = 0.10 h/c = 0.01 h/c = 0.10 h/c = 0.01 

4 0.0084404 -49.6616 -0.1073464 - 15.2491 
5 -0.001 5524 - 11.9756 - 0.0006399 1.2696 
6 -0.0003354 -1.1952 0.000 4 1 5 9 0.4666 
7 -0.0000245 0.2979 -0.000666 5 -0.0777 
8 -0.0000071 0.0700 -0.00021 13 -0.1712 
9 0.0000011 - 0.0849 - 0.000 042 1 -0.1033 

10 0.0000004 -0.0837 -0.0000062 - 0.0493 
11 0.000000 1 -0.0454 - 0.0000004 -0.0247 
12 -4.6255420 -0.0183 - 16.903 846 2 -0.0125 
13 - -0.0056 - -0.0056 
14 - - 0.00 1 1 - -0.0019 

- 104.0269 15 - 28.1130 - 

TABLE 3. Error in dimensionless force F/(6n,ucU) for two spheroids (minor axis c) separated by a gap 
2h in squeezing motion with velocity & U. Spheres are discretized with nine elements per particle, 
while the 6: 1 prolate spheroids employ 16 elements. The table shows an exponential decrease in error 
with increasing order of the basis N,. The last value in each column gives the actual force as 
calculated with that N,. 

- 

the solution for the highest-order basis. The last entry in each column gives the 
computed value at that NB. The results for a gap h/c  = 0.1 show rapid convergence 
with a relative error of order 2 x lou6 at N, = 11. The results for the 0.01 gap converge 
more slowly, but still yield a relative error of order 4 x lop5 at N, = 14. In this latter 
case, we have extended the basis up to N, = 15 to demonstrate the reliability for high 
basis counts. A more effective strategy in this case would be to employ additional 
elements in the near contact region. The squeezing flow between the two spheres is an 
example of an axisymmetric flow; however, this feature has not been exploited in the 
three-dimensional computation. 

To confirm that the performance of the spectral element algorithm is not limited to 
axisymmetric problems, we consider the squeezing motion between a pair of crossed 
prolate spheroids as illustrated in figure 2. Each spheroid is discretized with 16 elements 
by projecting onto the sides and ends of a cylinder. Figure 2 illustrates that the spectral 
boundary elements may be non-conforming, i.e. the corner of one element may fall 
along the side of an adjoining element, and the nodes need not coincide. The panel 
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layout on the cylinder is similar to that illustrated in figure 2 of the companion paper 
(Higdon & Muldowney 1995). We have selected an aspect ratio of 6: 1 to correspond 
to the particles employed in the many-body simulations of Claeys & Brady (1993 a, b, 
c). Table 3 shows the error in the resistance force for gaps of size h / c  = 0.1 and 0.01 
where c is the minor axis of the spheroid. The larger gap shows a relative error of order 
2 x at NB = 11, while the smaller gap shows slower convergence with a relative 
error of 2 x lop5 at NB = 14. Each of these results demonstrates excellent convergence 
for a problem involving slender particles with small lubrication layers. The performance 
in this case shows the effectiveness of placing smaller elements near the lubrication 
zone. Overall, the results of table 3 provide further confirmation of the reliability of 
spectral element formulations based on integral equations of the first kind. 

The numerical examples discussed above are sufficient to demonstrate the viability 
of the spectral boundary element method for the three-dimensional Stokes equations. 
There are however, additional concerns for the fluid dynamicists who would employ 
these algorithms in Stokes flow applications. These concerns include the presence of 
boundary walls for interior flows, the imposition of boundary conditions in periodic 
domains, the presence of piecewise continuous boundaries with intersecting surfaces, 
and the presence of stress singularities at boundary edges or cusps. In addition, free 
surface flows often lead to droplets of distorted shape which present greater challenges 
than the simple shapes analysed above. We shall address these concerns in the sections 
below, studying rigid domains in $ 4  and free surface flows in $7. Our goals are to 
demonstrate the reliability of the spectral boundary element algorithm in more 
complicated flows and to establish benchmarks for others who would develop 
advanced computational methods for three-dimensional Stokes flow. In pursuit of 
these goals, we might select any number of artificial model geometries; however, we 
find it more satisfying to consider well-characterized problems which yield physically 
meaningful results for the fluid dynamics researcher. 

6. Periodic domains - discontinuous surfaces 
To validate the performance of the spectral boundary element algorithm across a 

wider range of flows, we consider applications involving non-smooth boundary shapes, 
periodic domains and interior flows. To illustrate these applications, we consider two 
geometries which model permeable membranes and interlaced fibre screens employed 
in chemical engineering processes. Solid membranes with circular pores of equal sizes 
are employed in particle size analysis and separation, while screens are commonly 
employed as sieves or as collection devices in filtration systems. These models provide 
useful results for the engineering applications, but also introduce new features which 
test the spectral boundary element algorithm. These features include periodic domains, 
integral equations with mixed velocity-force boundary conditions, intersecting rigid 
surfaces (screens) and singular stresses associated with sharp boundaries (membranes). 
In all cases, we shall see that the spectral boundary element method shows rapid 
convergence with excellent accuracy. 

We begin by considering the fluid flow through a model screen. We suppose that the 
screen is composed of a periodic square grid of intersecting cylinders of radius a. Far 
from the screen, the fluid is maintained at constant pressure with a pressure drop across 
the screen of Ap. The dimensionless permeability (or mobility) of the screen is defined 
with respect to the length L by 



A spectral boundary element approach to Stokes $ow 181 

where Q is the volume flow rate through one unit cell, and L is the wavelength of the 
periodic grid. 

For the boundary integral calculation, we define a computational domain consisting 
of a single periodic cell extending in the vertical direction from z = + H to - H above 
and below the centreplane of the screen. The boundary conditions are no-slip on the 
surfaces of the cylinders, periodicity on the sides of the cell and infinity conditions 
f ,  = 0, f, = 0, f ,  = k A p / 2  on the top and bottom boundaries. With these boundary 
conditions, numerous tests were conducted to test the sensitivity of the permeability KL 
to the height of the finite domain. These tests showed that H = 4L is sufficient to 
guarantee a relative error in KL of less than 1 x compared with the limit H+ 00. 

Two different boundary discretizations were employed for the spectral element 
method. For large fibres with 2a/L = 0.5 to 0.98, the top half of the domain was 
discretized with one element on the top and centreplane boundaries, one element on 
each sidewall and one element on each quarter-cylinder for a total of ten elements. For 
small fibres with 2 a / L  = 0.001 to 0.5 an additional element was added to each sidewall 
to give more resolution near the fibre. A total of 22 elements was used over the entire 
domain. In each case, symmetry about the planes x = 0, y = 0, x = y, z = 0 was 
employed to reduce the number of unknowns. For small fibres, the volume flow was 
evaluated by integrating over the top surface element. For very large fibres near the 
limit 2 a / L  --f 1, the integral over the small open area at the centreplane yielded more 
accurate results. 

Table 4 shows the convergence of the spectral element computations for fibres of 
radius 2 a / L  = 0.01 and 0.95 as a function of the basis order NB. In each case, 
exponential convergence is achieved with relative errors at NB = 11 of 6 x lop5 and 
7 x lop4 respectively. Intermediate values of radius yield even more rapid convergence, 
e.g. 2a/L = 0.50 has an error of 8 x lo-’ at NB = 11. This performance is quite good, 
given the non-smooth character of the surface stress in the corners created by the 
intersecting cylinders. Table 5 presents the permeability as a function of cylinder radius 
for fibres from 2 a / L  = 0.001 to 0.98. Convergence tests for each value were performed 
to verify the numbers to the stated precision. As an independent test, lubrication theory 
analogous to that employed by Chapman & Higdon (1992) was employed to verify the 
value of KL as 2 a / L +  1. 

The permeability data presented in table 5 are the most useful macroscopic data for 
engineering applications. We note however, that the current algorithm also provides a 
simple and efficient approach to computing the entire microscopic flow field. One may 
discretize the volume of a unit cell by employing three-dimensional spectral elements 
or a simple Cartesian mesh. Interior integrals (12) may be evaluated at the grid points 
and these data employed to interpolate to any additional points. With this approach, 
the computed flow fields are readily accessible for further studies involving particle 
trajectories or alternative Lagrangian simulations. 

Our second example for periodic domains with non-smooth boundaries consists of 
a zero-thickness membrane with a periodic network of circular pores. We assume a 
square two-dimensional array in the (x, y)-plane with wavelength L and pore radius b. 
As before, we chose a single unit cell for the computational domain, extending from 
z = - H to + H. A value H = 4L is sufficient to guarantee a relative error of less than 
4 x compared with the result for H+ 00. For the circular pores, we exploit 
symmetry about the plane z = 0 and discretize only the top half of the domain. The 
boundary conditions on the top and sides of the unit cell are as discussed above, and 
the no-slip condition applies on the solid part of the membrane. From symmetry, the 
boundary conditions on the open pore surface are u, = 0, uy = O,f ,  = 0. The domain 
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N, 2alL = 0.01 2a/L = 0.95 2b/L = 0.01 2b/L = 0.95 

3 - - 7.5 x 10-2 5.6 x 
4 1.0 x 10-3 -3.1 x lo-' -3.9 x -8.5 x lo-$ 

- 

5 2.4 x - 1 . 7 ~  10-l -7.1 x -1.1 x lo-' 
6 1.9 x 10-3 -6.0 x lo-' -3.8 x -3.3 x 
7 1.2 x 10-3 6.6 x - 1.8 x 1.3 x 
8 7.3 x 10-4 2.3 x lo-* -8.3 x 9.3 x 10-4 
9 3.9 x 10-4 1.4 x 10-2 -4.1 x 10-4 -7.1 x 10-4 

10 1.9 x 10-4 4.4 x 10-3 - 1.8 x 10-4 -4.1 x 10-4 
11 6.9 x 10-5 7.3 x -8.7 x -6.6 x 

TABLE 4. Error in permeability for screens and porous membranes as a function of increasing order 
of basis N,. The table shows the error relative to the exact value for two choices of fibre radius a for 
screens, and pore size b for porous membranes. 

2al L 

0.001 
0.005 
0.01 
0.02 
0.05 
0.10 
0.20 
0.30 
0.40 
0.50 
0.60 
0.70 
0.80 
0.90 
0.95 
0.98 

YQIAPL' 
0.245 2 
0.17985 
0.15159 
0.123 23 
0.85630 x lo-' 
0.574908 x lo-' 
0.308945 x lo-' 
0.173283 x lo-' 
0.944514 x 
0.478 129 x lo-' 
0.213076 x 
0.765 181 x lo-$ 
0.183 128 x 
0.16077 x 
0.141 76 x 
0.572 x low7 

2bl L 
- 

- 
0.01 

0.05 
0.10 
0.20 
0.30 
0.40 
0.50 
0.60 
0.70 
0.80 
0.90 
0.95 

- 

- 

pQ/Apb3 
- 

~ 

0.3333 

0.3334 
0.3335 
0.3340 
0.3356 
0.3388 
0.3445 
0.3537 
0.3687 
0.3934 
0.4381 
0.4783 

~ 

- 

TABLE 5. Dimensionless permeability for screens of intersecting cylinders and for porous membranes. 
The table shows pQ/ApL3 for screens with cylinder radius a, grid wavelength L, and pQ/Apb3 for 
membranes with circular pores of radius 6 ,  grid wavelength L. All data accurate to f 1 in the last 
figure, except f 2  where last figure is underlined. 

is discretized with 17 elements, with one element on the top, and one element on each 
of the sidewalls. The circular pore is divided into four sectors with one element per 
sector. The solid part of the membrane is divided into eight elements with a thin four- 
element rim bordering the pore and four thicker outer elements extending to the edge 
of the unit cell. The basis points on the inner rim are stretched toward the pore edge 
to give additional resolution to resolve the singular shear stress at the pore's edge. 

In the limit as the pore radius approaches zero, 2b/L  --f 0, the solution for the pore 
approaches Sampson's solution for an isolated pore in an infinite plane (see Happel & 
Brenner 1973, p. 153): 

Thus, we define the dimensionless permeability Kb 
Q = Apb3/(3p). (25) 

Kb = pQ/(Apb3)7 (26) 
whose value approaches 1 / 3  as the pore radius approaches zero. 
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FIGURE 3. Permeability K, = p Q / ( A p L 3 )  versus surface porosity E for two model filters: solid line, 
grid of intersecting cylinders ; dashed line, circular pores in zero-thickness membrane. 

Table 4 shows the convergence of the permeability as a function of N, for pore sizes 
2b/L = 0.01 and 0.95. The accurate prediction of the permeability for the pore 
membrane presents a challenge for the numerical computation due to the singular 
stress at the pore’s edge. Nonetheless, the results for NB = 11 have converged in each 
case with a relative error of order 1 x Table 5 presents the permeability Kb as a 
function of pore radius 2b/L. These data show the departure from the Sampson 
asymptote Kb = 1/3 as the pore size increases. 

The excellent accuracy of the spectral results in the presence of the singular stresses 
is attributable to the mapping which stretches basis points toward the singular edge. 
The stress at the sharp edge has an x-liZ singularity (Moffatt 1964), while the basis 
point mapping is locally x - tz. While the polynomial discretization cannot resolve the 
singularity itself, the integral contribution - x-lizdx - d t  is bounded and is well 
represented by the spectral element discretization. The application of mappings in the 
basis variables 6 or q is one technique for dealing with singularities in the stress field. 
A second technique (hp refinement) is to decrease the size of the local element as the 
order of the basis is increased. We have had similar success with this technique, 
however, it typically requires a few additional elements and slightly higher 
computational cost for the same accuracy. 

We close this section with a comparison between the properties of the two filter 
models. Owing to the difference in the geometrical parameters a and b, we require a 
new parameter to compare the models on a common basis. We choose the surface 
porosity 6 defined as the open area divided by total area in the centreplane on the filter. 
The dimensionless permeability KL versus 6 for the two filters is plotted in figure 3. 
Note that the circular pore membrane has greater permeability for all values of surface 
porosity. This is due to the greater concentration of solid area in the corners of the unit 
cell, while the fibre screen tends to distribute the area more uniformly. It is well known 
in studies of fibrous media (Jackson & James 1986) that a more uniform surface 
distribution leads to lower permeability. 
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7. Free surface flows 
As a final test of the spectral boundary element algorithm, we return to equation (8) 

and consider free surface flows associated with droplet deformation. Our goal is to test 
the algorithm for more complex surface shapes and to assess the performance for flows 
driven by surface tension. For such flows, the jump in surface stress is proportional to 
the local surface curvature (div n) which requires second derivatives of the boundary 
geometry. Low-order methods (up to second order) yield discontinuous curvatures 
requiring special care in implementing the jump stress boundary conditions. By 
contrast, the high-order spectral basis yields a smooth curvature distribution with 
accuracy of order (NG - 2). As test case, we consider the non-axisymmetric instability 
of a toroidal droplet due to the interaction of gravitational and surface forces. 

When a non-buoyant viscous drop settles through a viscous fluid under conditions 
of weak surface tension, it may undergo an instability which leads to the formation of 
an open toroidal droplet (Kojima, Hinch & Acrivos 1984). The axisymmetric toroidal 
droplet may undergo further instabilities leading to variation in the cross-sectional 
radius and displacement of the torus centreline from the horizontal plane. In the later 
stages, these instabilities may lead to saddle-shaped droplets as shown in figure 4 of 
Kojima et al. Those authors present a theory for the axisymmetric evolution of the 
droplet leading up to a thin toroidal shape, but do not address the non-axisymmetric 
evolution in the later stages. In the present section, we discuss results for the 
instantaneous velocity field associated with a deformed toroidal droplet and identify 
the basic mechanisms leading to the long-term droplet shape. In a future effort, we shall 
present results for a full time dependent simulation of this instability. 

We consider a toroidal droplet of viscosity Ap and surface tension y with density pD 
settling through a fluid of density p and viscosity p. The deformed droplet surface is 
defined by 

(27) 1 
x = b cos @+ (a  + 7 sin mO) cos $ cos 8, 

y = b sin @+ (a+ 7 sinm@)cos $ sin@, 

z = (a+~sinmO)sin#, 

where a is the unperturbed core radius, b is the torus radius, 7 is the amplitude of the 
core perturbation, m is the perturbation wavenumber and @ and $ are parametric 
angles in (0, 27c) defining the surface position. A three-dimensional view of the 
deformed droplet is shown in figure 4. 

To characterize the deformation and settling velocity of the droplet, we define three 
average velocities. The first is the volume average velocity of the droplet: 

By symmetry and reversibility of Stokes flow, the only non.-zero component is the 
vertical velocity component u,. 

Next, we consider a given cross-section of the droplet at a plane 0 = O,, and define 
the velocity tii of the centroid at that cross-section. This may be expressed as 

where C denotes the perimeter and K+ the centroid of the cross-section. 
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FIGURE 4. Three-dimensional view of deformed torus described by equation (27) with parameters 
a = I ,  b = 6, 7 = 0.5, m = 4. Lines show positions of constant 5 and constant 3 on particle surface. 

- 

N B  

4 
5 
6 
7 
8 
9 

10 
11 
12 

Gravity flow Surface tension flow 

l%Wl 
0.042 696 
0.020021 
0.005 33 1 
0.000662 
0.000730 
0.000443 
0.000 177 
0.000 090 

- 
uz 

0.047865 
-0.002077 
-0.001 547 

0.000008 
0.000 024 
0.000 000 
0.000 000 
0.000 000 

- 1.309 090 

l%rl 

0.028 236 
0.036412 
0.002687 
0.001 666 
0.000 238 
0.000 138 
0.000 045 
0.000009 
- 

U ~ M A X  

- 0.007 82 1 
-0.006561 

0.000805 
0.000 387 
0.000052 
0.000010 

- 0.000 009 
-0.000003 

0.010 867 

Urhl.4x 

0.006 103 
- 0.002 850 
- 0.00041 3 

0.000260 
0.000 005 

-0.000006 
-0.000001 
-0.000 001 

0.035580 

TABLE 6. Error in surface velocity for a deformed toroidal drop illustrated in figure 4. Droplet shape 
defined by (27) with parameters : a = 1, b = 6,?1 = 0.5, m = 4. Velocities ]ue7J are maximum pointwise 
errors over the droplet surface for the respective flows. Mean settling velocity ii, is average over 
volume of droplet, non-dimensionalized with respect to Apa*/p. Radial and normal velocities li, and 
u"= are averaged over the cross-section and non-dimensionalized with respect to y /p .  The table shows 
a decrease in velocity error with increasing order of basis N,. The last entry in each column shows 
actual velocity evaluated with N, = 12. Subscript M A X  indicates the velocity evaluated at cross- 
section of maximum radius. 

Finally, we characterize the growth rate of the core radius by defining the average 
normal velocity at the cross-section: 

For the spectral boundary element computations, the borders of the elements are 
laid out at equal intervals of 0 and # with two elements in the #-direction and two 
elements per wavelength in the @direction. Numerous convergence tests were 
conducted to test the performance of the spectral element code and to verify the 
accuracy of the results. Table 6 shows the convergence results for a droplet with 
perturbation wave number m = 4 with radius b / a  = 6 and amplitude T / a  = 0.5. The 
deformation for this droplet is illustrated in figure 4. In table 6, we tabulate 
independent error measures for the gravity- and surface-tension-driven flows. We 
present results for the maximum pointwise error in u over the entire surface, as well as 
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FIGURE 5. Surface velocity of an unperturbed toroidal droplet with viscosity ratio h = 2 as a function 
of torus radius b / a .  Velocity non-dimensionalized as pu/y .  Solid line, mean normal velocity 11% as 
defined by (30); dashed line, mean radial velocity 11, as defined by (29). 

the errors in the mean velocity of the droplet a,, the radial velocity of the centroid U, 
and the mean normal velocity Cn. The latter quantities are evaluated at the cross 
sections of maximum radius. (Cross-sections of minimum radius show comparable 
results.) In all cases, the spectral element computations yield excellent accuracy with 
exponential convergence. The overall errors in the mean velocities are roughly an order 
of magnitude smaller than the maximum pointwise errors. The errors in the pointwise 
and mean velocities for the surface tension flow confirm the accuracy of the algorithm 
in evaluating curvature effects for complex surface shapes. 

With a reliable technique for computing the velocity fields in hand, we turn our 
attention to the physical mechanisms governing this phenomenon. Owing to the 
symmetry of the imposed perturbation, the gravitational and surface tension driving 
forces act independently in the instantaneous velocity field. The interaction of these 
effects occurs in the subsequent evolution when the vertical symmetry is broken. In 
figure 5 ,  we examine the radial and normal velocity induced by the surface tension for 
an undeformed droplet with 7 = 0. In this case, the surface tension causes the drop to 
pull inward with a negative radial velocity 27, and an increasing core radius with 
positive u”,. For an incompressible fluid, the volume of the droplet is fixed (V  = 2na2b), 
and the two velocities are related by 27, = -227, b/a.  For larger torus radius b, the 
magnitude of both velocities decreases owing to the reduction of curvature in the 
longitudinal direction. 

Next we examine the radial and normal velocity for a deformed droplet as a function 
of torus radius (figures 6 a ,  6). In each case, we plot the difference in velocity between 
the cross-sections of maximum and minimum core radius. The velocity differences 
illustrate the growth rate of the varicose instability. Results are shown for wavenumbers 
m = 1, 2, 3,4 with amplitude ? /a  = 0.1. We begin by considering the normal velocity 
difference in figure 6(a). For the m = 1 and rn = 2 perturbations, the disturbance is 
unconditionally unstable for all torus radii b/a. For these droplets, the curvature 
associated with the varicosity dominates, squeezing the fluid out of the constrictions 
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FIGURE 6. Surface velocity of perturbed toroidal droplet with viscosity ratio h = 2, perturbation 
amplitude q / u  = 0.1, versus torus radius b/a. Velocity non-dimensionalized as ,uu/y. (a)  Difference 
in mean normal velocities 8, at maximum and minimum cross-sections. (b) Difference in mean radial 
velocities 12~ at maximum and minimum cross-sections. Symbols identify curves for different 
wavenumbers: 0, m = 0 ;  17, m = 1; 0, m = 3; A, m = 4. 

and into the bulges on the droplet. For the m = 3 and m = 4 perturbations, the droplet 
is unstable for long waves when b / a  is large, but is stable for short waves associated 
with small b/a .  In these cases, the curvature in the longitudinal direction dominates, 
pulling the constriction toward its undisturbed position. This behaviour is analogous 
to that in the classic Rayleigh analysis of an axisymmetric liquid thread. The difference 
in the radial velocities is plotted in figure 6(b) .  In this figure, both positive and negative 
velocities displace the centroids from the initial circular path inducing an additional 
mechanism of instability. 

Figure 7 illustrates the effect of perturbation amplitude on the disturbance evolution. 
We show the difference in normal velocity at maximum and minimum cross-sections 
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FIGURE 7. Mean normal velocity 8, of perturbed toroidal droplet with viscosity ratio h = 2 ,  torus 
radius b/a  = 6, as function of perturbation amplitude s/a. Velocity non-dimensionalized as p l y .  
Symbols identify curves for different wavenumbers: 0, m = 0 ;  0, m = 1 ; 0, m = 3; A, m = 4. 
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FIGURE 8. Mean settling velocity g2 of an unperturbed toroidal droplet with viscosity ratio A = 2 as 
a function of torus radius b/a. Velocity non-dimensionalized as pu/Apga2. Solid line, computed 
velocity; dashed line, slender body theory (31) of Kojima et al. (1984). 

for tori with radius b/a  = 6. At small amplitudes, all curves are in agreement with 
linear theory showing a linear growth of velocity with amplitude. Each begins to show 
signs of saturation at the highest amplitude with the strongest decline for the rn = 4 
perturbation. At these large amplitudes, the constrictions become quite small, and the 
volume of fluid which is displaced from them is insufficient to greatly affect the radii 
of the bulges. 

Having illustrated the basic mechanisms responsible for the surface tension 
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FIGURE 9. Settling velocity of perturbed toroidal droplet with viscosity ratio A = 2, perturbation 
amplitude v/a = 0.1 versus torus radius bla. Velocity non-dimensionalized as ,uu/Apga2. Plotted 
quantity is difference in settling velocities 17, at maximum and minimum cross-sections for 
wavenumbers: 0, m = 0 ;  0, m = 1; 0, m = 3;  A, m = 4. 

instability, we turn next to the gravitational effects which are responsible for the saddle 
shapes observed in experiments. First, we plot the settling velocity of an unperturbed 
torus as a function of radius b/a, figure 8. The settling velocity increases monotonically 
with increasing radius b for fixed core radius a. This is easily explained because the 
gravitational driving force per unit length is fixed while the drag force decreases as the 
body becomes more slender. The computed settling velocity may be compared with 
that predicted by slender body theory (Kojima et al. 1984): 

Apga2(1 +A)ln(8b/a)+ 1 ++A 
4(1 + A )  

u, = - , 
lu 

showing excellent agreement over the entire range of radii. 
In figure 9, we examine the difference in centroid velocities Z?,IMAX - U " , I M I N  between 

the cross-sections of maximum and minimum radius. In all cases, the bulges settle more 
rapidly than the constrictions owing to the greater concentration of dense fluid. 
Effectively, the bulges are equivalent to dense droplets of larger radius, and the settling 
velocity is proportional to the square of droplet radius. For high wavenumbers m, the 
bulges and constrictions are closer together yielding a smaller velocity differential 
compared with the low-wavenumber disturbances. The m = I perturbation yields the 
largest velocity giving rise to the most rapid deformation of the ring. The m = 2 
perturbation leads to the saddle shape observed in the experiments of Kojima et al. 
while higher modes yield more elaborate shapes. Note that the vertical settle velocities 
are not the decisive factor in determining the most unstable mode of the instability. The 
dominant mechanism is the varicose instability associated with surface tension, while 
the gravitational deflection occurs after the basic instability has been established. In the 
absence of surface tension and perturbations of core radius, vertical displacements of 
the core centerline would show no growth owing to gravitational settling. This result 
may be inferred from the reversibility of low Reynolds number flow. 
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For any given torus, the most unstable mode will be determined by the normal 
velocity plotted in figure 6(a) .  For the thickest tori, the m = 1 mode is favoured, while 
for more slender droplets, higher modes are favoured, first m = 2, followed by m = 3, 
etc. Thus, we should expect more elaborate deformations as the torus becomes more 
slender. In this discussion, we have assumed the initial existence of a droplet of toroidal 
shape. It should be noted that the development of tori beyond a certain slenderness 
ratio b/a requires inertial effects or an imposed straining field to overcome the 
dilating effect of surface tension. In the absence of such effects, the torus radius will 
contract and the core radius will increase as shown in figure 5.  

8. Conclusions 
In this paper, we have introduced a new approach for boundary integral 

computations for low Reynolds number flow. We have demonstrated the accuracy and 
efficiency of this algorithm for equations of the first kind and of the second kind. We 
have considered geometries with extreme aspect ratios, small lubrication layers, 
intersecting surfaces, cusped boundaries and periodic as well as infinite domains. We 
have considered a number of applications in Stokes flow with application to particle 
mobility, droplet deformation and flow through membranes. In a further application 
of these techniques (Higdon & Muldowney 1995), we compute the resistance functions 
for spherical particles, drops and bubbles in a cylindrical domain. 

The spectral boundary element algorithm presented in this paper provides the basis 
for a new class of boundary integral algorithms. The introduction of a spectral basis 
facilitates a number of additional refinements analogous to those employed with 
spectral finite element algorithms. While we have utilized the same order basis in each 
variable and on each element, self-adaptive methods may be employed which adjust the 
order of the basis according to local requirements. For this purpose, the spectral basis 
provides a simple error estimate based on the computed coefficients of the orthogonal 
polynomials. The use of non-conforming elements and degenerate quadrilaterals is of 
significant interest in the finite element literature owing to the increased flexibility in 
domain discretization. These features are an integral part of the present algorithm as 
demonstrated in $5.  Iterative solutions and multigrid methods are the subject of much 
interest in both the boundary integral and spectral element literature. The spectral 
boundary element algorithm provides an efficient platform for the implementation of 
these techniques. Specifically, we note that lower order representations for ' coarse ' 
grid iterations may be extracted from the high-order system matrices with no 
additional numerical integration. This is a standard feature of spectral element 
discretizations. The implementation of these ideas as well as other refinements will be 
the subject of future efforts in this area. 
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